Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy.
نویسندگان
چکیده
Despite the apparent similarity between the plant Photosystem II reaction center (RC) and its purple bacterial counterpart, we show in this work that the mechanism of charge separation is very different for the two photosynthetic RCs. By using femtosecond visible-pump-mid-infrared probe spectroscopy in the region of the chlorophyll ester and keto modes, between 1,775 and 1,585 cm(-1), with 150-fs time resolution, we show that the reduction of pheophytin occurs on a 0.6- to 0.8-ps time scale, whereas P+, the precursor state for water oxidation, is formed after approximately 6 ps. We conclude therefore that in the Photosystem II RC the primary charge separation occurs between the "accessory chlorophyll" Chl(D1) and the pheophytin on the so-called active branch.
منابع مشابه
Femtosecond photodichroism studies of isolated photosystem II reaction centers.
Photosynthetic conversion of light energy into chemical potential begins in reaction center protein complexes, where rapid charge separation occurs with nearly unit quantum efficiency. Primary charge separation was studied in isolated photosystem II reaction centers from spinach containing 6 chlorophyll a, 2 pheophytin a (Pheo), 1 cytochrome b559, and 2 beta-carotene molecules. Time-resolved pu...
متن کاملDetermination of the primary charge separation rate in isolated photosystem II reaction centers with 500-fs time resolution.
We have measured directly the rate of formation of the oxidized chlorophyll a electron donor (P680(+)) and the reduced electron acceptor pheophytin a(-) (Pheoa(-)) following excitation of isolated spinach photosystem II reaction centers at 4 degrees C. The reaction-center complex consists of D(1), D(2), and cytochrome b-559 proteins and was prepared by a procedure that stabilizes the protein co...
متن کاملPhotodamage to the oxygen evolving complex of photosystem II by visible light
Light damages photosynthetic machinery, primarily photosystem II (PSII), and it results in photoinhibition. A new photodamage model, the two-step photodamage model, suggests that photodamage to PSII initially occurs at the oxygen evolving complex (OEC) by light energy absorbed by manganese and that the PSII reaction center is subsequently damaged by light energy absorbed by photosynthetic pigme...
متن کاملCopper(II) inhibition of electron transfer through photosystem II studied by EPR spectroscopy.
EPR spectroscopy was applied to investigate the inhibition of electron transport in photosystem II by Cu2+ ions. Our results show that Cu2+ has inhibitory effects on both the donor and the acceptor side of photosystem II. In the presence of Cu2+, neither EPR signal IIvery fast nor signal IIfast, which both reflect oxidation of tyrosinez, could be induced by illumination. This shows that Cu2+ in...
متن کاملEnergy and electron transfer in photosystem II reaction centers with modified pheophytin composition.
Energy and electron transfer in Photosystem II reaction centers in which the photochemically inactive pheophytin had been replaced by 13(1)-deoxo-13(1)-hydroxy pheophytin were studied by femtosecond transient absorption-difference spectroscopy at 77 K and compared to the dynamics in untreated reaction center preparations. Spectral changes induced by 683-nm excitation were recorded both in the Q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 37 شماره
صفحات -
تاریخ انتشار 2005